Question:

examples of operating systeams

by Guest12330742  |  10 years, 7 month(s) ago

0 LIKES UnLike

examples of operating systeams

 Tags: examples, Operating, systeams

   Report

1 ANSWERS

  1. Ali Abdullah
    Hi, While the Windows 9x series offered the option of having profiles for multiple users, they had no concept of access privileges, and did not allow concurrent access; and so were not true multi-user operating systems. In addition, they implemented only partial memory protection. They were accordingly widely criticised for lack of security. The Windows NT series of operating systems, by contrast, are true multi-user, and implement absolute memory protection. However, a lot of the advantages of being a true multi-user operating system were nullified by the fact that, prior to Windows Vista, the first user account created during the setup process was an administrator account, which was also the default for new accounts. Though Windows XP did have limited accounts, the majority of home users did not change to an account type with fewer rights – partially due to the number of programs which unnecessarily required administrator rights – and so most home users ran as administrator all the time. Windows Vista changes this[5] by introducing a privilege elevation system called User Account Control. When logging in as a standard user, a logon session is created and a token containing only the most basic privileges is assigned. In this way, the new logon session is incapable of making changes that would affect the entire system. When logging in as a user in the Administrators group, two separate tokens are assigned. The first token contains all privileges typically awarded to an administrator, and the second is a restricted token similar to what a standard user would receive. User applications, including the Windows Shell, are then started with the restricted token, resulting in a reduced privilege environment even under an Administrator account. When an application requests higher privileges or "Run as administrator" is clicked, UAC will prompt for confirmation and, if consent is given (including administrator credentials if the account requesting the elevation is not a member of the administrators group), start the process using the unrestricted token.[6] Example: Linux/Unix Linux and UNIX both have two tier security, which limits any system-wide changes to the root user, a special user account on all UNIX-like systems. While the root user has virtually unlimited permission to effect system changes, programs running as a regular user are limited in where they can save files, what hardware they can access, etc. In many systems, a user's memory usage, their selection of available programs, their total disk usage or quota, available range of programs' priority settings, and other functions can also be locked down. This provides the user with plenty of freedom to do what needs to be done, without being able to put any part of the system in jeopardy (barring accidental triggering of system-level bugs) or make sweeping, system-wide changes. The user's settings are stored in an area of the computer's file system called the user's home directory, which is also provided as a location where the user may store their work, a concept later adopted by Windows as the 'My Documents' folder. Should a user have to install software outside of his home directory or make system-wide changes, they must become the root user temporarily, usually with the su or sudo command, which is answered with the computer's root password when prompted. Some systems (such as Ubuntu and its derivatives) are configured by default to allow select users to run programs as the root user via the sudo command, using the user's own password for authentication instead of the system's root password. One is sometimes said to "go root" or "drop to root" when elevating oneself to root access. For more information on the differences between the Linux su/sudo approach and Vista's User Account Control, see Comparison of privilege authorization features. File system support in modern operating systems Support for file systems is highly varied among modern operating systems although there are several common file systems which almost all operating systems include support and drivers for. Solaris The Solaris Operating System (as with most operating systems based upon open standards and/or open source) uses UFS as its primary file system. Prior to 1998, Solaris UFS did not have logging/journaling capabilities, but over time the OS has gained this and other new data management capabilities. Additional features include Veritas (Journaling) VxFS, QFS from Sun Microsystems, enhancements to UFS including multiterabyte support and UFS volume management included as part of the OS, and ZFS (open source, poolable, 128-bit, compressible, and error-correcting). Kernel extensions were added to Solaris to allow for bootable Veritas VxFS operation. Logging or journaling was added to UFS in Solaris 7. Releases of Solaris 10, Solaris Express, OpenSolaris, and other open source variants of Solaris later supported bootable ZFS. Logical Volume Management allows for spanning a file system across multiple devices for the purpose of adding redundancy, capacity, and/or throughput. Solaris includes Solaris Volume Manager (formerly known as Solstice DiskSuite.) Solaris is one of many operating systems supported by Veritas Volume Manager. Modern Solaris based operating systems eclipse the need for volume management through leveraging virtual storage pools in ZFS. Linux Many Linux distributions support some or all of ext2, ext3, ext4, ReiserFS, Reiser4, JFS , XFS , GFS, GFS2, OCFS, OCFS2, and NILFS. The ext file systems, namely ext2, ext3 and ext4 are based on the original Linux file system. Others have been developed by companies to meet their specific needs, hobbyists, or adapted from UNIX, Microsoft Windows, and other operating systems. Linux has full support for XFS and JFS, along with FAT (the MS-DOS file system), and HFS which is the primary file system for the Macintosh. In recent years support for Microsoft Windows NT's NTFS file system has appeared in Linux, and is now comparable to the support available for other native UNIX file systems. ISO 9660 and Universal Disk Format (UDF) are supported which are standard file systems used on CDs, DVDs, and BluRay discs. It is possible to install Linux on the majority of these file systems. Unlike other operating systems, Linux and UNIX allow any file system to be used regardless of the media it is stored in, whether it is a hard drive, a disc (CD,DVD...), an USB key, or even contained within a file located on another file system. Microsoft Windows Microsoft Windows currently supports NTFS and FAT file systems, along with network file systems shared from other computers, and the ISO 9660 and UDF filesystems used for CDs, DVDs, and other optical discs such as Blu-ray. Under Windows each file system is usually limited in application to certain media, for example CDs must use ISO 9660 or UDF, and as of Windows Vista, NTFS is the only file system which the operating system can be installed on. Windows Embedded CE 6.0, Windows Vista Service Pack 1, and Windows Server 2008 support ExFAT, a file system more suitable for flash drives.

Question Stats

Latest activity: 10 years, 7 month(s) ago.
This question has been viewed 314 times and has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.